## Workflow IR 10 - Calculate Volume

This document guides you through three methods to calculate volume: Grid, Triangle, and End Area.

## Calculating Grid Volumes

Calculate the volume between the existing surface and the proposed surface using the grid volume method.

1. Select Tools $>$ Customize $>$ [Toolbars] and check on Volume. $\langle\mathbf{D}>$ Close to dismiss the Customize dialog.
2. Select the Grid Volume command.


- Select the desired Original Surface.
- Select the desired Design Surface.
- Enter the Grid Interval. Ideally, this should be equal to or a factor of the template drop interval or the interval at which data was collected.
- Set the desired the Cut Factorand Fill Factor.

3. $\langle\mathbf{D}>$ Apply.

4. Record the results.

If you would like an electronic copy of the Grid Volume:
5. $\quad \mathbf{D}>$ the Results button. This displays the Results dialog box with the volume data.

6. In the Results dialog box, $\langle\mathbf{D}\rangle$ the Save Asbutton.
7. Navigate to the desired folder, enter a File name, then $\langle\mathbf{D}>$ Save to create the report file.

8. $\mathbf{D}>$ Close to dismiss the Results dialog box.
9. $\langle\mathbf{D}>$ Close to dismiss the Grid Volume command.

## Calculating Triangle Volumes

Calculate the volume between the existing surface and the proposed surface using the triangle volume method.

1. From the Volumes toolbar select the Tinangle Volume.

$$
\begin{array}{|lr|}
\hline \text { Volume } & \text { 园 } \\
\hline \alpha E & \text { Q } \\
\hline
\end{array}
$$



- Set the Mode to Entire Surface.
- Select the desired Original Surface.
- Select the desired Design Surface.
- Set the Cut Factor and Fill Factor as required for the project.

2. $\langle\mathbf{D}>$ the $\mathbf{A D D}$ button.
3. $\langle\boldsymbol{D}>$ Apply.

This method will take longer to process than the grid method.
4. The results are displayed in the Bentley Civil Report Browser dialog box.
5. Use the Tiangle Volume.xls template to review the report.

If you would like an electronic copy of the Triangle Volume:
6. Select File >Save from the menu bar.
7. Navigate to the desired folder, enter a File name, then $\boldsymbol{D}>$ Save to create the report file.
8. $\boldsymbol{D}>$ Close to dismiss the Triangle Volume command.

## Calculating End-Area Volumes

Calculate the volume between the existing surface and the proposed surface using the end-area volume method (CDOT standard method). With the first run, you will not take the subgrade into account.
In order to use this command, you must be in the design file where your final cross sections were cut.

1. Open the desired cross section design file.
2. From the Cross Sections dialog box, select the End-Area Volumes from the dialog box explorer.

3. Select the desired Cross Section Set using the drop down menu.

Note: End area volumes are calculated based on the cross section graphics. If the selected set does not contain sections for the full length of the project, or the design toes fall outside the cross section grid, then the volumes will not be correct for the project.
4. Identify the surfaces to be compared from the Surfaces list. There must be one Existing type surface and one Design type surface.


## 5. Set Imperial Units to Cubic Yards.

6. Toggle on Create XMLReport

| Cross Sections |  |  |  | - 回 |
| :---: | :---: | :---: | :---: | :---: |
| File |  |  |  |  |
| Cross Section Set: $\text { SH } 86$ | Mode: © Refresh $\bigcirc$ Display On $\bigcirc$ Display OffStart: $203+80.28$Stop: $260+43.16$ |  |  |  |
| Create Cross SectionAnnotate Cross SectionUpdate Cross SectionEnd-Area Volumes | Surface Type <br> D 12345 existing... Existing <br> V SH 86 Design |  | Method <br> (O) Standard Correct for Curvature <br> Limits Station Range <br> $\begin{aligned} \text { Start: } & 203+80.28 \\ \text { Stop: } & 203+80.28\end{aligned}$ |  |
|  | Imperial Units Cubic Yards <br> Cubic Feet |  | Ignore Areas Smaller Than: Plot Mass Haul Diagram | $0.00$ |
|  | Apply <br> Preferences... <br> Close <br> Help |  |  |  |

## 7. $\langle\mathbf{D}>$ Apply.

8. The Bentley Civil Report Browser appears. There are several report templates that are useful. Some recommended templates to look at are:

- EndAreaVolume.xsl
- EndAreaVolumePage Totals.xsl
- Volumes.xls

The first two are standard end area volume reports. the Volume.xls also has the same volume data, but is formatted differently. It also contains volume information on the closed shape template components contained in the design surface.

If you would like an electronic copy of the End Area Volume:
9. Select File > Save from the menu bar.

1. Navigate to the desired folder, enter a File name, then $\boldsymbol{D}>$ Save to create the report file.
2. Close the Bentley Civil Report Browser.
